CSO Area #1	Dry weather flow rate	1.0
	Regulator capacity	3.0
CSO Area #2	Dry weather flow rate	0.5
	Regulator capacity	2.0
CSO Area #3	Dry weather flow rate	1.0
	Regulator capacity	2.0

Springfield CSS Capacities (MGD)

Rational Method

```
Q<sub>wet</sub> = CiA;Where:
```

C = Runoff Coefficient (% Imperviousness)

i = Rainfall Intensity

A = Area

- Rainfall intensity "i" is variable
- Not designing the system for a typical or design rainfall event
- Making a determination how the Combined Sewer System (CSS) will react due to a precipitation event

Springfield Hydrologic Flow Balance, Q_{wet} = CiA

CSO Area #1 wet weather runoff

(30.8% impervious) x (1" rain) x (300 acres)

= 2.5 MG runoff per inch of precipitation

CSO Area #2 wet weather runoff

(43.8% impervious) x (1" rain) x (250 acres)

= 3.0 MG runoff per inch of precipitation

CSO Area #3 wet weather runoff

(56.4% impervious) x (1" rain) x (150 acres)

= 2.3 MG runoff per inch of precipitation

C = Runoff Coefficient (% Imperviousness)
i = Rainfall Intensity
A = Area

Springfield: Hydrologic Flow Balance, Q_{wet} = CiA

CSO Area #1 wet weather runoff	2.5 MG runoff over 4 hours of rainfall	= 15 MGD average flow rate
CSO Area #2 wet weather runoff	3.0 MG runoff over 4 hours of rainfall	= 18 MGD average flow rate
CSO Area #3 wet weather runoff	2.3 MG runoff over 4 hours of rainfall	= 13.8 MGD average flow rate

Flow Balance Diagram

Flow Balance Diagram

For 1 inch. 4 Hours Rainfall Event

- Total Overflow volume:
 - Pump Station CSO 04 = 0.25 MG
 - >CSO Area 01 = 2.2 MG
 - > CSO Area 02 = 2.8 MG
 - >CSO Area 03 = 2.1 MG
 - > Total = 7.35 MG

Exhibit 3-1. Basic Flow Balance Diagram

- Compare capacity at key locations in the collection system with peak wet weather flow rates
 - ➤ Intersections of major interceptors
 - **≻**Regulators
 - ➤ Pump stations
 - ➤ Cross connections
- Additional study may be required in areas that often flood during wet weather

Example—Bottleneck

- Pump station capacity should equal or exceed capacity of interceptors delivering flow
- Overflow = 5.5+2-6 = 1.5 MGD

Combined Sewer System (CSS) Overflow (CSO) Modeling